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Abstract. We propose an original model for blood flow dynamics using the 

Theory of Scale Relativity with an arbitrary and constant fractal dimension in the 

fractal hydrodynamic representation. We show that the flow is directed towards 

the walls. This type of flow could lead, in our opinion, to a thickening effect. 

This type of effect leads to cholesterol deposition on the blood vessels walls and 

is one of the main sources of atherosclerosis. 
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1. Introduction 

 

Blood flow dynamics and also the physiological and pathological 

changes that blood undergoes along the lenght of the whole arterial trunk are 

still topics of interest for physicians worldwide. 

We can assimilate blood to a complex non-Newtonian fluid, having the 

following structural and functional entities: plasma, red blood cells, platelets, 

white blood cells, cholesterol and also other suspended particles (Popescu, 

1999). In such a conjecture, we can state that the laws of fractal physics can be 

applied to sanguine circulation. The structure of the arterial system, being a 

complex one, further justifies the use of fractality, due to its numerous and 
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various ramifications, because they are causing areas of turbulence and also 

interruptions of the linear flowing, thus making the widely-used classical 

physics models not applicable in such a context. We can therefore consider “a 

morphological” multi-fractality induced by the complex structure of the whole-

body blood vessels system, and also a “functional” multi-fractality induced by 

the blood flow “regimes” (Tesloianu, 2014). Let us note that a viscoelastic 

fluid’s stress, as opposed to that of a Newtonian fluid, depends both on the 

actual manifested stress as well as on the stress applied during previous 

deformations of the fluid in question (Mitchel, 2009; Badii and Politi, 1997).  

If we take a look at the specialized literature, we can see that standard 

theoretical models employed in complex fluid dynamics analysis, especially  

that of flow through blood vessels are ambiguous (Schwartz and Murry, 1998). 

The “classical” model in which blood entities move along continuous and 

differentiable trajectories is, in our opinion, false, because it cannot encompass 

all the types of dynamics induced by blood flow (the separation of blood 

components through turbulence regimes, blood-blood vessels interactions etc.). 

Taking the above into consideration, we propose a new model in which 

blood structural units move on continuous but non-differentiable curves (fractal 

curves). Our aim is not to predict the entirety of interactions which take place in 

a blood-vessel system. Our model represents a simple and effective solution, 

because all these interactions can be substituted by employing fractality 

(Nottale, 1989). 

One can thus be conducted to specific dynamics of a particular kind of 

fluid, interactions-free, for which the flow lines are continuous but non-

differentiable curves.  

Current theoretical models used to describe a complex fluids’ dynamics 

are sophisticated (Thomas, 2009; Michel and Thomas, 2012). These models can 

be made as simple as possible if we take into consideration the fact that the 

interaction processes’ complexity imposes various time-dependent resolution 

scales, and also the evolution of the patterns imposes different freedom degrees 

(Badii and Politi, 1997). 

In this context, new and original theoretical models can be designed by 

supposing that the complex fluids showing chaotic behavior gain self-similarity, 

associated with high degrees of fluctuations at all the possible space-time scales 

(Mandelbrot, 1983; Michel and Thomas, 2012). In the case in which temporal 

scales are large when compared to the inverse of the highest Lyapunov 

exponent (Cristescu, 2008; Federer and Aharoner, 1990), we can replace both 

the deterministic trajectories with a set of potential trajectories and also the 

concept of definite positions with the concept of probability density.  

Since complex fluids hold the universal property of fractality (non-

differentiability), we find it necessary to construct a fractal physics. If we now 

consider the fact that non-differentiability replaces the complexity of 

interactions processes, we find that it is not necessary to employ the entirety of 
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classical quantities from standard physics. This subject was developed in the 

Theory of Scale Relativity (Nottale, 2011; Nottale, 1993) and in the non-

standard Theory of Scale Relativity , i.e. the Theory of Scale Relativity with an 

arbitrary constant and fractal dimension (Mercheș and Agop, 2016). In this 

framework we can make the assumption that the movements of a complex 

system’s structural components occur on continuous but non-differentiable 

curves, which leads us to affirm that all the physical phenomena which 

influence these dynamics are dependent not only on the space-time coordinates 

but also on the space-time scales resolution. As a result, the quantities used to 

describe the complex systems’ dynamics might be considered fractal functions 

(Nottale, 2011; Mercheș and Agop, 2016).  

In the present paper, various blood flow dynamics are analysed with the 

purpose of defining new mechanisms for the evolution of biophysical processes 

in the arterial tree, these having implications in different pathologies related to 

blood (occlusion of the arteries, cholesterol accumulation on blood vessels etc). 

 

2. Materials and Methods 

 

Let us now assume that the movements of blood’s structural entities 

occur along continuous but non-differentiable curves. Then, the following 

consequences can be seen (Nottale, 2011; Mercheș and Agop, 2016): 
 

i) Any continuous and non-differentiable curve of blood’s structural 

entities (blood fractal curve) is explicitly scale resolution t dependent, i.e., its 

length will tend to infinity when t will tend to zero. 

Let us mention that a curve can be characterized as non-differentiable if 

it obeys the Lebesgue theorem (Mandelbrot, 1983), in other words its length 

will become infinite when the scale resolution will tend to zero. In this limit, a 

curve is as zig-zagged as can be imagined. Therefore, every point of this curve 

holds the property of self-similarity, i.e. it is holographic in nature (the whole 

will be reflected in every part) (Mandelbrot, 1983).  
 

ii) The physics of blood phenomena are intrinsically related to the 

behaviour of a set of functions taking place during the magnifying operation of 

t (the scale resolution). Then, by using the substitution principle, t can be 

identified with dt, i.e., t dt  and, thus, it will be considered an independent 

variable. The notation dt is reserved for the usual time, like in the Hamiltonian 

blood dynamics. 
 

iii)  The dynamics of blood’s structural entities are described by using 

fractal variables (functions which are both space-time coordinates and scale 

resolution dependent). Therefore, in any point of the blood fractal curve, we can 

define two derivatives for the variable field  ,Q t dt : 
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Here, the “+” sign has been attributed to the forward processes of blood’s 

structural units, while the “–” sign has been attributed to the backward ones. 

iv)  The spatial coordinate field differential  ,idX t dt , employed in 

describing blood dynamics, can be written as the sum of these two differentials, 

one of which is scale resolution independent (differential part  id x t ), and the 

other one is scale resolution dependent (fractal part  id t ), i.e., 
 

     , ,i i id X t dt d x t d t dt           (2) 
 

v) The spatial coordinate field non-differentiable part, employed in 

describing blood dynamics, satisfies the equation (Mandelbrot, 1983): 
 

   
1

, FDi id t dt dt       (3) 

where i
 are constant coefficients through which the type of fractalization that 

describes the blood dynamics is specified and DF gives us the fractal dimension 

of the blood fractal curve. 

It is our opinion that blood processes imply dynamics which take place 

on geodesics having various fractal dimensions. These numerous fractal 

dimensions for blood geodesics comes as a result of the blood’s structure. 

Specifically, for DF = 2, processes of a quantum type are generated in blood 

dynamics. For DF < 2, processes of a correlative type are induced, while for DF 

> 2 processes of a non-correlative type can be determined (Nottale, 1989; El 

Naschie et al., 1995). 

vi)  The differential time reflection invariance of blood’s dynamical 

variables is obtained by using and  combining the derivatives d dt  and 

d dt in the non-differentiable operator 

ˆ 1

2 2

d d d dd i

dt dt dt

       
    

   
   (4) 

Eq. (4) comes as a result of a specific mathematical procedure: the 

complex prolongation procedure applied to blood dynamics (Mercheș and 

Agop, 2016; Cresson, 2006). Applying the non-differentiable operator to the 

spatial coordinate field, employed in describing blood dynamics, blood’s 

complex velocity field can be obtained: 
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ˆ
ˆ

i
i i i

D F

dX
V V V

dt
       (5) 

with 

1 1
,

2 2

i i i i
i i

D F

d X d X d X d X
V V

dt dt

    
         (6) 

The real part i

DV  of the blood complex velocity field is differentiable 

and independent of scale resolution (differentiable velocity field). The 

imaginary part i

FV  is non-differentiable and depends on the scale resolution 

(fractal velocity field). 

vii) Not taking into account any external constraint, an infinity of 

geodesics that can relate any pair of points can be found, it being true for all 

scales of blood dynamics. In blood’s fractal space, the geodesics themselves 

substitute all of the structural units. In this way, any external constraint can be 

defined as a selection of blood geodesics. The infinite number of geodesics, 

their non-differentiability and the two values of the derivative imply a 

generalized statistical fluid-like description (blood). Therefore, the average 

values of the blood variables must be analyzed in the above-stated sense, so that 

the average of id X
is 

i id X d x       (7) 

with 

0id       (8) 

Eq. (8) implies that the mean of the fractal fluctuations is null. 
 

viii) By using a covariant derivative we can describe blood dynamics. 

The explicit form of this derivative can be thus obtained. We consider now that 

the blood fractal curves are immersed in a 3-dimensional space and that X
i
 is the 

spatial coordinate field of a point from this fractal curve. Let us also consider a 

variable field  ,iQ X t  and the Taylor expansion up to the second order 

 
1

,
2

i i l k

t i l kd Q X t Qdt Qd X Qd X d X                  (9) 

The above-written relations are valid in any point and more for the points 

X
i
 on the blood fractal curve that we have selected in Eq. (9). It results that the 

blood variables’ forward and backward values from (9) can be written as 

1

2

i l k

t i l kd Q Qdt Qd X Qd X d X            (10) 

Let us now suppose that the mean values of the all variable field Q and 

its derivatives coincide with themselves and also that the differentials id X
and 

dt are independent. It results that the average of their products is the same as the 

product of averages. Hence (10) becomes 
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1

2

i l k

t i l kd Q Qdt Q d X Q d X d X             (11) 

Even if the mean value of id  is null, a different situation can be 

observed for the higher order of id  . We will now shift our focus on the 

averages l kd d  
. Taking Eq. (3) into account it results that 

 
 2 1FDl k l kd d dt dt   



                   (12) 

where it has been accepted that the sign + corresponds to 0dt   and the sign – 

corresponds to 0dt   

Then, Eq. (11) can be written as follows: 

 
 2 11 1

2 2

FDi l k l k

t i l k l kd Q Qdt Q d X Qd x d x Q dt dt 


     
          
 

       (13) 

Now, if we divide by dt and we do not take into consideration the terms 

that contain differential factors, we can write: 

 
 2 11

2

FDi l k

t i l k

d Q
Q v Q dt Q

dt
 



                       (14) 

Then we can define the operators 

 
 2 11

2

FDi l k

t i l k

d
v dt

dt
 



                 (15) 

In this context, if Eqs. (4), (5) and (15) are taken into account, we can 

then calculate d̂ dt . It results: 

 
 2 1

ˆ 1ˆ
4

FDi lk

t i l k

dQ
Q V Q dt D Q

dt


                   (16) 

where 

,

lk lk lk

lk l k l k lk l k l k

D d id

d d              

 

   
         (17) 

Eq. (16) permits us to define the blood dynamics’ covariant derivative 

in the form 

 
 2 1

ˆ 1ˆ
4

FDi lk

t i l k

d
V dt D

dt


               (18) 

 

3. Results and Discussions 
 

If the principle of scale covariance is taken into consideration (the laws 

of physics - blood dynamics specific - are scale transformations invariant) we 

can state that the transition from differentiable physics to non-differentiable 

physics can be solved by substituting the standard time derivative d dt  with the 

non-differentiable operator d̂ dt . This operator plays the role of a scale 
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covariant derivative, i.e. we can use it to write the blood dynamics’ fundamental 

equations just like the ones in the differentiable case. Taking these into account, 

if we apply operator (18) to the complex velocity field (5), and without any 

external constraint, then the blood geodesics can be written as:  

 
 2 1

ˆ ˆ 1ˆ ˆ ˆ ˆ 0
4

F

i
Di l i lk i

t l l k

dV
V V V dt D V

dt


                         (19) 

We can thus observe that the local acceleration ˆ i

tV , the convection 

ˆ ˆl i

lV V  and the dissipation ˆlk i

l kD V   , are balanced in any point of the blood 

fractal curve. Furthermore, the complex coefficient of viscosity-type 

 
 2 114 FD lkdt D

 present in the bloods dynamics specifies that this is a rheological 

medium. Therefore, we can state that it has memory by its own structure.  

If fractalisation is achieved through Markov-type stochastic processes, 

involving Lévy type movements of blood’s structural entities, then: 

2i l i l il                   (20) 

where il  is the Kronecker’s pseudo-tensor.  

In this context, the equation of blood geodesics takes the following form 

 
 2 1

ˆ ˆ
ˆ ˆ ˆ ˆ 0F

i
Di l i l i

t l l

dV
V V V i dt V

dt



                       (21) 

or more, if we separate movements on differential and fractal scale resolutions, 

 
 

 
 

2 1

2 1

ˆ
0

ˆ
0

F

F

i
Di l i l l iD

t D D l D F l F

i
Di l i l l iF

t F D l F F l D

dV
V V V V dt V

dt

dV
V V V V dt V

dt









         
 

         
 

     (22) 

Employing the procedure from (Solovăstru et al., 2016), we can 

model, at a fractal scale resolution, the blood dynamics by using the following 

equations: 

 
 2/ 1FDi l i l i

t F F l F l FV V V dt V


    =    (23) 

0i

i FV      (24) 

Therefore, at a fractal scale resolution, the specific impulse 

conservation law is expressed through Eq. (23), while the states density 

conservation law is explicitated by Eq. (24). 

Finding the solutions for Eqs. (23) and (24) can be quite difficult, 

because this equation system is a non-linear one (Batchelor, 2000; Landau and 

Lifshitz, 1987). However, one can find an analytical solution of this systems, in 

the case of a plane symmetry (x,y) stationary flow. In this context, Eqs. (23) and 

(24) for  , ,0F x yV VV  take the form:  

 
 

2
2/ 1

2
 FDx x x

x y

V V V
V V dt

x x y


  
 

  
         (25)
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We can also write the boundary conditions for the flow:

 

   
0 0

lim , 0,  lim 0,  lim , 0x

y x
y y y

V
V x y V x y

y  


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
  (27)  

and also state that the flux momentum per length unit is constant 

2 const.xV dy




       (28) 

By using the method developed in (Solovăstru et al., 2016; Batchelor, 

2000; Landau and Lifshitz, 1987) for solving Eqs. (25) and (26), with the limit 

conditions (27) and (28), we find the following solutions: 
 

 
 

 
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3 3
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                (29) 
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
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  



  

  
  
   

 

 
 

                                
      
      
 
 

        (30) 

 

Eqs. (29) and (30) show that the blood velocity field holds a high degree 

of non-linearity through topological solitons of kink-type (tanh), non-topological 

solitons of breather-type (sech
2
), and also through topological – non-topological 

soliton mixtures of kink-breather-type (sech
2
-tanh). Due to the fact that blood has 

an increased structural complexity, (due to its various structural entities, that 

retain their own velocity field) we will write Eqs. (29) and (30) in a more accurate 

way, so that indexes will be assigned for each component.  

For 0y  , we will obtain in Eq. (29) the blood’s flow critical velocity 

in the form 

 
 

 

2
3

1
32/ 1

1.5
6

, 0
F

x c
D

V x y V

dt x






  
  
   

  

 
 

               (31) 
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while relation (28), taking into account (31), becomes 

   2 2, ,0
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d

V x y dy V x dy



 

        (32) 

so that the critical cross section of the strain lines of the blood is given by: 

   
 

1
2 3

32/ 1

2
, 0 2.42

2

FD

c

c

d x y dt x
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
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                (33) 

Eqs. (29) and (30) can be clearly simplified if the normalized quantities are used 
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y
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 


 
 

   

    
   
   

  

   
   

               (34) 

where 
0 0 0,  ,  x y w  are the specific lengths and the specific velocity, respectively, 

of blood’s laminar flow. It results that 

  2

1 2
3 3

1.5 0.5
, sechu


 

 

  
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   (35) 
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2

3
2

1 1 2 2 2
3 3 3 3 3

4.5 0.5 0.5
, sech tanh

3
v

  
 

   

      
     

        

  (36) 

The dependence of the normalized velocity field u on the normalized 

spatial coordinates 𝜉, 𝜂 for various nonlinearity degrees (𝜔 = 0.3; 6) are shown 

in Figs. 1a, b and 2a, b.  

 
Fig. 1 ‒ The normalized velocity field u dependence on the normalized spatial coordinates 

𝜉, 𝜂 for the nonlinearity degree 𝜔 = 0.3: (a) 3D representation and contour plot (b). 
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These results show that the velocity field along the blood flow direction 

(𝜉) is lightly affected by the nonlinearity degree (there is always a decrease in 

velocity on the flow axes no matter the degree of nonlinearity). But we must 

also highlight that the blood flow direction (𝜂) is heavily affected. Blood flow 

starts from constant values on the 𝜂 axis, and we must highlight that, with the 

increase of 𝜔, preferential blood flow directions can be identified. 

 
Fig. 2 ‒ The normalized velocity field u dependence on the normalized spatial coordinates 𝜉, 

𝜂 for the nonlinearity degree 𝜔 = 6: (a) 3D representation and contour plot (b). 
 

We represent in Figs. 3a, b and 4a, b the dependences of the normalized 

velocity field u on the normalized spatial coordinates 𝜉, 𝜂 for various 

nonlinearity degrees (𝜔 = 0.3; 6). For small degrees of nonlinearity, the 

variations of the velocity field behave in a similar matter on both directions (𝜉, 

𝜂). We can also see that for higher values of the nonlinearity degree these 

variations are only focused in a single direction (𝜉). 

 
Fig. 3 ‒ 3D representation (a) and the contour plot (b) of the normalized velocity field v 

on the normalized spatial coordinates 𝜉, 𝜂 for the nonlinearity degree 𝜔 = 0.3. 
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Fig. 4 ‒ The 3D representation (a) and the contour plot (b) of the normalized velocity 

field v on the normalized spatial coordinates 𝜉, 𝜂 for the nonlinearity degree 𝜔 = 6. 

 

Considering the above, we can see that the force with which blood will 

act upon the walls of the flow vessels can be crucial for understanding arterial 

occlusion and other circulatory system diseases.  

In our model the normalized force is given by: 
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Figs. 5a, b and 6a, b show, for various degrees of nonlinearity, the 

evolution of the normalized force field on the two-flow direction (𝜉, 𝜂). Thus, 

we can see that if blood’s nonlinearity increases, the force aimed at the walls 

also increases. This can lead to developing a framework for understanding the 

complex mechanisms which appear in various occlusions of arteries (partial or 

total occlusions) – see Fig. 7. 

 
Fig. 5 ‒ The dependence of the normalized force field F of a blood flow on the vessels, 

on the normalized spatial coordinates 𝜉, 𝜂 for two resolution scales: 3D representation 

(a) and contour plot (b) for the nonlinearity degree 𝜔 = 0.3. 
 

 
Fig. 6 ‒ The dependence of the normalized force field F of a blood flow on the vessels, 

on the normalized spatial coordinates 𝜉, 𝜂 for two resolution scales: 3D representation 

(a) and contour plot (b), for the nonlinearity degree 𝜔 = 6. 
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Fig. 7 ‒ Endoluminal view of a major atherosclerotic plaque with thrombus 

 (image obtained through optical microscopy). 

 
Our new theoretical model explains, by employing fractality, the 

atherogenesis process (Tesloianu et al., 2015), basically “adapting” to the most 

commonly used (classical) anatomical and histopathological descriptions; in 

this context, this fractal physics model represents an original method for 

sustaining well documented research regarding the morpho-pathological aspects 

of blood flow. In specialized literature one can find a large number of 

microscopy images that describe the spatial-temporal hologram of the 

phenomenon; we can thus observe non-fractal - fractal and microscopic - 

macroscopic translations through holographically reproductible auto-similarity 

(Tesloianu et al., 2015). In our opinion, fractality introduces new mathematical 

and semantic notions for defining atherogenesis. Therefore, the process if 

atherogenesis can be accurately described by fractal physics methods. 

 
4. Conclusions 

 

The present paper develops a fractal model for analyzing blood flow 

dynamics.  In the case of a laminar flow of the blood, we obtain and apply 

fractal hydrodynamic equations. 

In this way a new model for blood flow and for cholesterol deposition 

on blood vessel walls can be designed. Our results showed that a directional 

flow aimed at the walls can be determined. In our opinion, this can be an 

explanation for why the thickening effect appears, it being one of the main 

causes of atherosclerosis.  
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UN MODEL FRACTAL PENTRU DINAMICILE DE 

 CURGERE ALE SÂNGELUI 

 

(Rezumat) 

 

În această lucrare propunem un model original pentru analiza dinamicilor 

curgerii sangvine folosind Teoria Relativității de Scară într-o dimensiune fractală 

constantă arbitrară în reprezentarea hidrodinamică fractală. Rezultatele arată o curgere 

direcționată către pereți. Acest lucru ar putea explica în opinia noastră atât efectul de 

îngroșare al vaselor, sursa principală a aterosclerozei, cât și depunderea de colesterol pe 

pereții vaselor de sânge. 
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